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ABSTRACT I 
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1 

Given a system of l inear  equations with more equations than unknowns, we 

seek t o  determine that vector of unknowns which minimizes the norm of the  

residual of the system i n  the  uniform sense. 

t a in s  t h i s  solution a f t e r  a f i n i t e  number of trial solutions have been examined 

i n ' a  sequence i n  which the residual norm decreases with each successive step. 

The implementation of the method exploit8 e f f i c i en t  matrix decomposition up- 

dating Sche~WXi resul t ing i n  reduced computation t h e e  when campared wi th  a 

A method is presented which ob- 

presently popular method. 



1. INTRODUCTION 

Suppose w e  a r e  given an mxn rea l  matrix A ( w i t h  m > n ) ,  a real m-vector b 

and we seek t o  determine a real n-vector x* such t h a t  

for  a l l  real n-vectors x (where I i * l l  ind ica tes  the uniform norm). 

i s  termed a "uniform" ("Chebychef" , "Minimax", "La") so lu t ion  t o  the overdetermined 

system denoted by "Ax z b". 

Such a n  x* 

That such a so lu t ion  XI e x i s t s  i s  easy t o  show. We first not ice  t h a t  

I I y  - bl I i s  a continuous function of Y = Ax. 

i s  a compact subset of t h e  (at most) n dimensional subspace {Ax, x E Rn) of Rm, 

hence contains a minimum y* of I Iy - b ]  I and t h i s  minimum i s  obviously a minimum 

over t h e  e n t i r e  subspace. 

I IAx* - bl I 2 I IAx - b l {  fo r  a l l  x E Rn. 

The set { Y l Y  =: Ax, I IY  - bl1 5 1 lbl I >  

By se lec t ing  an x* such that, Ax* = y*, w e  have 

If furthermore, it i s  assumed tha t  every nxn submatrix of A i s  non-singular 

then t h e r e  exists a unique so lu t ion  x*. 

Haar condition; should it not hold, x* may s t i l l  be unique for  a f ixed b. 

This assumption on A i s  c a l l e d  the  

xowe~~er  there aliqays exists s ~ m e  b fer . i .rb?~h "...L__* +he "-_- oc!??f.!nn I-_______ i e  net  uniquee 

Henceforth it w i l l  be assumed that A s a t i s f i e s  t h e  Haar condition. 

A proof t h a t  t h e  Hsar condition does guarantee a unique so lu t ion  may be 

found i n  var ious approximation theory t e x t s  (e.g., Cheney [TI). 

presented here provides a constructive proof. 

i n i t i a l  x and proceeds t o  determine a f i n i t e  sequence of x ' s  reducing the 

quant i ty  IIAx - bl l  a t  each s t ep ,  u n t i l  x* i s  reached where I/Ax - bl I can no 

longer be reduced. 

The algorithm 

This method begins with any 

Section 2 includes some i n i t i a l  de f in i t i ons  and discussion as w e l l  as a 



geometrical interpretation of the descent algorithm. 

analytically presented in Section 3. 

implementation of the algorithm. 

with another technique is mentioned in Section 5. In Section 6, the modifica- 

tions to the algorithm allowing the addition of linear equality and inequality 

constraints are briefly discussed. 

The algorithm is 

Section 4 discusses the actual efficient 

Computational experience and comparison 
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2. THE RESIDUAL AND THE GE0-Y OF THE ALGORITHM 

For any given n-vector x, t he  res idua l  Ax - b w i l l  be denoted by r ( x )  

The quant i ty  I I.(.> I 1 we seek t o  minimize 

We may par- 

(and occasional ly  simply by r ) .  

i s  the  m a x i m  of t h e  mgnitudes of t h e  m components of r ( x ) .  

t i t i o n  t h e  s e t  of a l l  res idua ls ,  R = { r ( x ) l x  E: R"), i n t o  two d i s t i n c t  c l a s ses  

according t o  the number of components of t h e  vector which a r e  maximal i n  

magnitude : 

R1 = {r (x ) ln  or  l e s s  of the  components of r ( x )  a r e  equal t o  I I r ( x )  I I 
i n  magnitude) 

R2 = { r ( x ) l n  + 1 or  more of t h e  components of r ( x )  a r e  equal t o  

I I r ( x )  1 1  i n  magnitude) 

If we s e l e c t  a pa r t i cu la r  x E: Rn and assume a l l  such se lec t ions  are equally 

l i k e l y ,  then with probabi l i ty  one the corresponding r e s idua l  r ( x )  l i e s  i n  R1. 

I n  the descent algorithm, i f  we begin with an i n i t i a l  t r ia l  so lu t ion  whose 

r e s idua l  lie8 i n  R1, and thus  has k (< - n )  components of maximal magnitude, 

we shall move t o  a second t r ia l  solut ion w i t h  k + 1 o r  more r e s idua l  components 

of maximal magnitude. Subsequently, at  each s t ep  t h e  number of such components 

of The r e s i a u a i  must increase by at least one, with t h e  resu i t  that after u t  

most n s t eps  an x has been determined whose r e s idua l  belongs t o  R2. 

so lu t ions  subsequent t o  t h i s  have res idua ls  i n  R2, although t h e  number of 

maximal magnitude components does not necessar i ly  increase from s t e p  t o  s tep .  

All t r i a l  

A t  each s t ep  t h e  quant i ty  I I r (x )  I I decreases;  hence t h e  name "descent 

method". The i t e r a t i o n  continues u n t i l  a point i s  reached a t  which no descent 

i s  poss ib le ,  implying t h a t  t h e  solut ion has been reached. 

Graphically we may consider the subset of RnxR defined by { ( x , e )  l e  - > I I r ( x )  I I , 
x E R"). This s e t ,  being t h e  in te rsec t ion  of t h e  2m half-spaces 
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h e )  

and Ux,W 

t h  (where ai denotes t h e  i 

8 > a x - bi;x € Rn) i = 1, ..., m - i  

- n 0 2 -(ai x - b ); x E R } i = 1, ..., m i 

row of A and bi t h e  ith element of b ) ,  i s  a convex 

polytope. 

c l e a r  t h a t  if we introduce t h e  notion of "down" corresponding t o  decrease i n  

t h e  last component, that t h e  lowest point  on t h e  polytope i s  p rec i se ly  

(x*, I I r ( x y )  I I ). 
i s  equivalent t o  determination of t h e  minimal point  of the  poly-tope. 

descent algorithm t o  be presented produces a f i n i t e  sequence of po in ts  on t h e  

surface of t h e  polytope which descend t o  t h i s  minimal point .  

Points  on i t s  sur face  must have t h e  form (x, I I.(.) I I )  and it i s  

We may th ink  graphica l ly  that t h e  so lu t ion  t o  t h e  problem 

The 

Using t h e  nomenclature of Berge [6, page 1691, w e  def ine  a "pr ivi leged 

l i n e "  of a polytope P through a point  a, as a l i n e  whose in t e r sec t ion  w i t h  P 

contains  a on the i n t e r i o r .  I f  Va denotes t h e  l i n e a r  manifold formed by the  

pr iv i leged  l i n e s  of P through a, then t h e  in t e r sec t ion  of Va and P i s  a "face" 

and t h e  "order" of t h e  f ace  i s  t h e  dimension of Va. 

v e r t i c e s  ( thus  ve r t i ce s  are exact ly  t h e  extreme po in t s  of t h e  polytope) and 

c l e a r l y  every point on t h e  surface of t h e  given polytope i s  contained i n  a 

face of order at most n. There is  one f ace  of order n + 1: t h e  i n t e r i o r  of 

t he  polytope. 

number of half-spaces t h e  t o t a l  number of faces  i s  f i n i t e .  This f a c t  pro- 

v ides  t h e  basis fo r  t h e  proof of f i n i t e  terminat ion of t h e  algorithm: each descent 

ends a t  t he  minimal point  of a face ,  hence only f i n i t e l y  many descents a r e  possible .  

Faces of order zero a r e  

Since a l l  f aces  of lower order are in t e r sec t ions  of a f i n i t e  

t 

* /  
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3. THE DESCENT ALGORITHM 

For a given vector  x ,  the r e s i d u a l  r ( x )  must have some k of i t s  components 

of m a x i m a l  magnitude (where 1 < k < m )  and m - k s t r i c t l y  submaximal. L e t  M(x) - -  
be t h e  set of those  k indices  corresponding t o  maximal components. 

l e t  MTX) denote the same set of indices except given t h e  sign of t h e  correspond- 

ing residual component: 

-i E: MTX) i f  r i ( x )  < 0. 

Further ,  
+ 

+ 
i . e . ,  if i E M(x), then i E: MTx) i f  r i ( x )  > 0 and 

+ 

The following lemma and theorem provide a correspondence between polytope 
+ 

faces  and t h e  sets MTx),. 

LEMMA 1: 

the  polytope through (x, I I r (x )  I I ) if and only if 

A l i n e  L = I ( x  + A h ,  I I r (x)I  I + XZ)JX E R) is  a pr iv i leged  l i n e  of 

ai AX * sgn r i (x)  z 

f o r  a l l  i E M(x). 

PROOF: For L t o  be a pr iv i leged  l i n e  through (x, I I r ( x )  I I we must have 

lai(x + hhx) - bil 5 I I r ( x > I  I + 

f o r  i = l,..., m and all h i n  some neighborhood of 0. Thus f o r  t h e  same values  
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and thus it follows that 

sgn r i (x)  Xa, Ax - < Xz. 

This holds for posit ive and negative values of A, resul t ing i n  

sgn r i (x)  ai Ax = z 

for i c M(x). 

Now suppose a Ax = sgn r i (x)  z holds f o r  a l l  i E M(x). 

sgn ri(x) (ai x + Aai Ax - bi) = I Ir(x)I I + Az; 

Then 
i 

thus 

f o r  A i n  a neighborhood of 0. For i # M(x) 

for  A i n  some neighborhood of 0. Combining these we have 

I 

for  i = l,...,m and A i n  some neighborhood of 0 which i s  equivalent t o  L 

being a privileged l i n e  of the  polytope. 
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THEOREM 1: 

I Ir(xl)l  1 )  and (x,, 1 Ir(x,)l 1 )  respectively, axe equal i f  and only i f  

The two faces generated by the  privileged l ines  through (xl, 

Mf(xl) = Mi(x2). 

PROOF: 

same. 

then be a privileged l i n e  a t  both points. 

We may assume x1 # x2. Suppose first that the two faces a re  the  

The l i n e  passing through (xl, I Ir(x,) 1 1 )  and (x,, I Ir(x,)I 1 )  must 

From the  lemma 

= I t r(xl)  1 I - I Ir(x,) I I sgn ri(xl)  ai 

for  i E M(xl) and 

4- + 
for  i E M(x2). 

w e  may assume there  is  an i* E Mf(xl) - M-(x2)' and either I r l i w l ( X 2 ) 1  < 

1 Ir(x,)I I o r  sgn r 

We have 

Suppose M-(xl) # M(x2).  Thus, without l o s s  of general i ty  
+ 

(x,) # sgn rli*l (x,)= 
li*l 

Thus 



through (xl, I Ir(x,) f 

points .  

and (x  I Ir(x,) I I i s  a Privi leged l i n e  a t  both 
2' 

The faces generated by t h e  pr iv i leged  l i n e s  a t  each of t h e  poin ts  

must include the opposite point and thus  t h e  faces  must coincide.  

Using Theorem 1, we see that we may bound t h e  number of faces  by bounding 
m 

k=l  

+ 
t h e  number of possible sets M-. This bound i s  c l e a r l y  C (i) 2k = 3m - 1; i n  

p rac t i ce  however w e  f i n d  t h e  number of faces  t o  be on t h e  order of m. 

? 

a 



3. THE DFCXENT ALGORITHM 

For a given vector x, w e  sha l l  define a d i r e c t i o n  of descent from x a s  

any n-vector Ax f o r  which 1 l r ( x  + A h ) [  I < I I r (x )  I I f o r  a l l  s u f f i c i e n t l y  small, 

but pos i t i ve ,  values of A. 

t i o n  of d i r e c t i o n s  of descent. 

The following theorem i s  t h e  b a s i s  f o r  determina- 

THEOREM 2: If t h e  system of inequa l i t i e s  

f o r  a l l  i E M(x), has a so lu t ion ,  then Ax is also a d i r e c t i o n  of descent from 

x. If no so lu t ion  e x i s t s  then  no descent i s  poss ib le  and x = x*, t h e  minimizer 

of I I r ( x > I  1 .  

PROOF: 

system of l i n e a r  i n e q u a l i t i e s  

Suppose f i rs t  that x # x*. We must prove that a so lu t ion  t o  t he  

s g n ( r i ( x ) )  ai(x* - x )  < 0; 

thus ,  x* - x always s a t i s f i e s  t h e  inequa l i t i e s ,  Al te rna t ive ly  suppose t h e r e  

9 



e x i s t s  a solut ion Ax so t h a t  f o r  i E M(x), 

f o r  i E M(x). 

pos i t i ve  X ( i n  fact  fo r  

For i f M(x) I r i ( x ) (  < l l r ( x ) 1  1 .  ThuB f o r  s u f f i c i e n t l y  small 

( r . ( x  + Ah) I < I I r (x ) I  I .  
A s u f f i c i e n t l y  small, pos i t i ve  and independent of i 

Combining t h e  r e s u l t s  f o r  i E M(x) we can say fo r  
1 

thus 

and Ax i s  a d i rec t ion  of descent. 

If we have determined a d i r ec t ion  of descent Ax from x,  w e  are guaranteed 

some p o s i t i v e  A so t h a t  t h e  s t e p  from x t o  x + A h  r e s u l t s  i n  a decrease i n  

t h e  r e s idua l  nom. Since hx must s a t i s f y  t h e  inequa l i t i e s  of Theorem 2, w e  

may examine the  proof t o  see that A s a t i s fy ing  

A = m i n  

suf f ices .  

d i r e c t i o n  of descent Ax was determined as some so lu t ion  t o  t he  l i n e a r  i nequa l i t i e s ,  

W e  could consider an  algorithm where a t  each t r i a l  so lu t ion  xy t h e  

10 



!,h:.:i u:;lzc t h e  A :!c!t.c:ter! r r o m  !,he ~ ~ h ~ v e ,  .y. i s  rcplnced by x + X&x, and t.hc 

process repea ts .  With t h i s  algorithm we may guarantee t h a t  I I.(.) I I decreases 

at each s t e p  but t h e r e  is no guarantee of f i n i t e  convergence ( i . e . ¶  determina- 

t i o n  of t h e  so lu t ion  i n  a f i n i t e  number of s t e p s )  or  even any convergence a t  

a l l .  It i s  poss ib le  f o r  t h e  sequence of so lu t ions  from t h i s  algorithm t o  have 

a set of accumulation po in t s ,  none of which i s  x*. 

To produce an algorithm w i t h  f i n i t e  convergence, we must be more ca re fu l  

about t h e  se l ec t ion  of hx and A .  

The following theorem provides such a ca re fu l  s e l ec t ion .  

THEOREM 3: Suppose f o r  a l l  i E M(x) 

h h h 

X = min A ;  and x = x + XAx . 
i E I I '  1 

PROOF: M'(x). Notice 

f i r s t  t h a t  s ince  Iri(x)l  2 I I r (x) l  I ,  I I r (x ) I  I - sgn(ai Ax + r i ( x ) )  r i ( x )  - > 0 .  

Furthermore i f  equa l i ty  were t o  hold w e  would have 

For i) it su f f i ces  t o  show t h a t  0 < Ai < - 1 for a l l  i 

11 



which i m p l i e s  t ha t  sgn(ai  Ax + r i ( x ) )  = sgn(r , (x) )  and t h a t  i 

v i r t u e  of i # M'(x), however, 

M(x). by 

i .e . ,  s e n ( r i ( x ) ) ( a i  Ax + r i ( x ) )  0 and 

which i s  a contradiction. Henceforth we may assume that t h e  numerator i n  

t he  expression for A That t h e  denominator i s  a l s o  

s t r i c t l y  pos i t i ve  follows because f o r  it t o  be non-positive w e  would have 

i s  s t r i c t l y  pos i t i ve .  i 

Since I I r ( x ) I  I > 0, sgn(ai AX + r i ( x ) )  must then be -sgn(ai Ax) which i s  

equivalent t o  lai Ax1 < ( r i ( x ) l i  t hus  lai AX1 < I I r ( x )  I I but t h i s  con t r ad ic t s  

t h e  above inequality.  

Having now shown that A > 0 we show Ai < 1. If it were t h e  case that i - 
A. > 1, we would have 
1 

which i s  a contradiction. 
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Turning t o  conclusion ii) we s h a l l  ohow that f o r  a l l  i 

bi&I (1 - $1 I l r ( x > I  I 

and f o r  i E M'(x) 

For t h e  f i rs t  we need r e c a l l  t ha t  I r i (x )  I I I.(.) 1 1  and thus t h e  curve 

Ir i (x  + AAx)l f o r  h 0 i s  dominated i n i t i a l l y  by (1 - j r < x )  1 1 .  For i kf 

M'(x), the  first,  pos i t i ve  in te rsec t ion  of these  curves i s  exac t ly  a t  A = xi, 
thus  s ince  fi  5 hi, ( r i ( x  + hAx)l 5 (1 - %)  l I r ( x ) I I .  For i E M'(x),  

r i (x  + Ah) = ri(x) + hai Ax = (1 - A) r i (x ) .  

= (1 - h )  I I r ( x )  I I .  
Thus { r i (x  + = (1 - h ) l r i ( x ) l  

A 

For a l l  0 C h 5 1, and i n  p a r t i c u l a r  f o r  h = A we have 

For t h e  t h i r d  p a r t  of t h e  conclusion w e  need only show t h a t  f o r  some i d 
h 

M'(x), I r i ( x ) l  = I l r ( i ) ]  I ( s ince  it has already been shown that M'(x) C M(G)). 

But f o r  some Mf(x ) ,h i  = and as w&s stated previously lri(x + hi h)  I = (1 - hi) 

I I r ( x )  I I; t hus  lri(2) I = I Ir(x^) 1 I 
The descent algorithm can now be described using t h e  cons t ruc t ion  of 

t h e  theorem. Given any point  x ,  t he  system of i n e q u a l i t i e s  

is  solved i n  such a way t h a t  t he  subset M'(x) of ind ices  f o r  which equal i ty  

holds,  is as l a r g e  as poss ib le .  

that it i s  poss ib le  t o  have equal i ty  f o r  a l l  ind ices  of M(x) ( i . e . ,  M'(x) = 

M(x)) and from conclusion (iii) of Theorem 3 it follows that  M ( 2 )  has a t  

least one more component than M(x). 

Notice that i f  M(x) has n or  less indices  

We see that i n  n or  less such s t eps  we 

13 



determine an  x such that M(x) has n+l  or  more components. 

phase of t h e  descent. I n  the  second phase more ca re  must be shown i n  t h e  

s e l e c t i o n  of t h e  d i r ec t ion  of descent. 

This i s  t h e  i n i t i a l  

We shall show that  a ver tex  of t h e  polytope associated with the problem 

can be reached i n  a f i n i t e  number of s t e p s ,  (u sua l ly  n )  and then  from one 

ve r t ex ,  another i s  found a l s o  i n  a f i n i t e  number of s t eps  (usua l ly  one) .  

t h e  f a c t  t h a t  t h e  number of v e r t i c e s  i s  f i n i t e ,  we may conclude that t h e  

"lowest" ver tex  on t h e  polytope, t h a t  one corresponding t o  t h e  so lu t ion ,  is 

loca ted  i n  a f i n i t e  number of s t eps .  

Using 

Lemma 2: If (x ,  I I r (x )  1 1 )  is not a ve r t ex  on t h e  polytope then  w e  may solve 

h A 

f o r  a l l  i E M(x) and determine x ,  as i n  Theorem 3, such t h a t  M(x) # M(x). 

Thus ( s ince  M(x) may contain a t  most m elements) eventually a ver tex  must 

be reached by recurs ive ly  descending i n  t h i s  manner. 

PROOF: 

l i n e  passing through it. 

Since (x ,  I Ir(x)[ I )  i s  not a ver tex  t h e r e  is  a t  l e a s t  one privileged 

But according t o  Lemma 1, t h i s  implies a so lu t ion  

t o  ai Ax = s g n v i ( x )  z f o r  all i E M(x) f o r  some Ax and z, which i s  equivalent 

t o  sgn(vi(x)) ai Ax = - 1  Iv(x) 1 1  f o r  su i t ab ly  r e sca l ed  Ax and z. 

A t  a ve r t ex  we must have a t  least n+l  ind ices  i n  M(x). 

a Ax as before with t h e  s e t  M'(x) containing at least n elements. 

done i n  t h e  case  of more than n + l  ind ices  i n  M(x) w i l l  not be discussed here, 

s ince  t h i s  case  occurs exceedingly r a r e l y  i n  p r a c t i c e  and t h e  techniques are 

simple generalizations.  

We s h a l l  determine 

How t h i s  i s  

The case of exac t ly  n+l w i l l  be discussed i n  detai l .  

Let k be any element of M(x) and Ax t h e  unique so lu t ion  t o  

14 
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for i E M(x) - k. 
Theorem 3 can be performed without further computation. 

> - 1  ir(x) I I then let y be the n-vector that expresses sgn(r (x)) a 

If sgn(v,(x)) ak Ax 5 - 1  Ir(x) I I then the descent step of 
If sgn(v,(x)) ak Ax 

as a k k 
linear combination of the vectors sgn(r ( x ) ) a  i E M(x) -- k. That y exists 

and has no zero component follows from the IIaar condition. Since 
i i’ 

(where we have assumed an indexing of y corresponding to the indices of M(x) 

- k) if we were to select some j E M(x) - k it would follow that 

Thus if now we solve the system 

for i E M(x) - j, we would have- sgn(r (x))a J j 



We would l i k e  t o  determine j so that 

which i s  equivalent t o  

W e  then s e l e c t  j so t h a t  t h e  quant i ty  (1 - S) /y j  i s  maximized. 

with a l i t t l e  inspection w e  can see t h a t  1 - S > 0, so it s u f f i c e s  t o  maximize 

However, 

l/y (i .e. ,  determine minimum y f o r  y > 0). 

t ha t  

If 1 - S < 0, t hus  S - > 1, no t i ce  - j j j 

cont rad ic t ing  our assumption t h a t  

Returning t o  t h e  determination of j, if a l l  y < 0, then  x is t h e  so lu t ion  

If t h e r e  would be such a d i r e c t i o n  t o  t h e  problem since descent i s  impossible. 

of descent v then it would s a t i s f y  

0 > sgn(r . (x) )a iv  f o r  i E M(x). 
1 

But then  



As a r e s u l t  w e  have shown t h a t  e i t h e r  a d i r e c t i o n  of descent Ax or Ax 

may be determined or t h a t  t h e  so lu t ion  has been reached. This i s  summarized 

i n  t h e  following theorem. 

Theorem 4: 

M ( x )  has exac t ly  n+ l  components and k i s  an element of M(x) then one of t h e  

following holds 

If (x ,  1 I r (x )1  I )  i s  a vertex of t h e  polytope such that t h e  se t  

i )  Let t ing  Ax s a t i s f y  

r e s u l t s  i n  

so that Ax y i e l d s  a d i r ec t ion  of descent as i n  Theorem 3 w i t h  M(x) 

- k C M'(x). 

ii) Let t ing  Ax s a t i s f y  

r e s u l t s  i n  

so that Ax i s  not a d i r ec t ion  of descent. However l e t t i n g  y s a t i s f y  



and se lec t ing  j so t h a t  y > 0 but y f yi f o r  all yi > 0 , t h e n  by so lv ing  
j j 

r e s u l t s  i n  sgn(r ( x ) ) a  hx < - 1  I r ( x )  I I so that yields  a d i r e c t i o n  of 3 3 -  
descent as i n  Theorem 3 wi th  M(x) - j C M'(x). 

then x = xC the so lu t ion .  

If however no y > 0 J 

18 



The primary cormputation required i n  t h e  descent algorithm i s  that of 

solving a sequence of square l i n e a r  systems. If we denote such a system by 

T By = d, then it may also be required t o  solve a system of t h e  form B w = f 

(which i s  t h e  case when v e r t i c e s  a r e  reached). Furthermore another system 

B'y' = d ' ,  may need t o  be solved a t  the subsequent s t ep ,  B'  d i f f e r i n g  from 

B i n  only one row. 

these  problems. 

We seek t o  provide numerically s t a b l e  methods f o r  solving 

An obvious approach i s  t o  perform an LU f ac to r i za t ion  of B a t  each s t ep  

and make no use of t h e  r e l a t i o n  between B and B ' .  Thus w e  have B = LUP where 

L i s  lower triangular, U i s  u n i t  upper t r i angu la r ,  and P i s  a su i t ab le  

permutation matrix. This fac tor iza t ion  i s  t h e  resul t  of Gaussian elimination 

by columns with p a r t i a l  

lower t r i angu la r  system 

l e t  y = P y . To solve 

f ac to r i za t ion :  L e t  W = 

f i n a l l y  solve t h e  upper 

We see that t h e  LU 

T, 

pivoting. 

LT = d, t h e  upper t r i angu la r  system U S; = F, and then 

T t h e  transposed problem B w = f w e  may use t h e  same 

P f ,  solve t he  lower t r i angu la r  system UT? = w, and 

t r i angu la r  system L w = 2. 

f ac to r i za t ion  is usefu l ,  but it requ i r e s  approximately 

To solve By = d w e  need only solve t h e  

- 
T 

3 n / 3  mult ip l ica t ions  (and t h e  same number of addi t ions)  t o  determine. An 

obvious method f o r  reducing t h e  computation i s  t o  not ice  t h a t  t h e  f irst  k-1 

s t eps  of t h e  f ac to r i za t ion  are es sen t i a l ly  independent of rows k through n 

(and i n  p a r t i c u l a r  row k). 

have t h e  form BPE = LkUk where Pk i s  a permutation matrix and L has t h e  s t ruc tu re  

If we perform k-1 s t eps  of t h e  f ac to r i za t ion ,  we 

k 



3 
(where L1 i s  k-lxk-1 lower t r i angu la r  and R2 is k-1x1 and R i s  n-k+lxl and 

U, has the  s t ruc ture  
n 

1 T 
(where U i s  k-lxk-1 upper t r i a n g u l a r ) .  F i r s t  no t i ce  that i f  B ' P i  = LiUi 

represents  t h e  f i r s t  k-1 s teps  of f a c t o r i z a t i o n  of B', then Pk = P'  k s ince  

interchanging of columns i n  the  f i r s t  k-1 s t eps  i s  based only on element:; of 

t h e  first k-1 rows, and B and B' are i d e n t i c a l  i n  these  elements. 

second, t h a t  

Notice, 

-1 
c '  1 = ( c i u l  )ul + (c; - c; u 

c '  = (cl lu2-1)u2 + (c; - c; u2-1 u2) I 
2 

(Where c i  represents  t h e  first k-1 components of cP$ and c; t h e  remainder),  

o r  i n  matrix form 

1-1 2 U w e  have 1-1 
Thus, l e t t i n g  R2' = C;U and Q 3 I  = C i  - C i  U 

1 2 
Since t h e  L , L4, U1, and U blocks of L and U k are unal tered through t h e  

remainder of t h e  f ac to r i za t ion  (as well as t h e  first k-1 columns of Pk) t h i s  

information can be read off of t h e  f i n a l  f a c t o r s  L, U ,  and P. After solving 

fo r  t h e  quan t i t i e s  k2' and Q3' t h e  f a c t o r i z a t i o n  of B' can begin a t  t h e  k 

k 

t h  
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t he  f ac to r i za t ion  completely over. The average number of operations performed 

3 is then approximately n /6 (if we assume k has equal l ike l ihood of being one 

through n ) .  Thus a saving of ha l f  the computation may be expected. 

This updating procedure i s  t h e  column-wise decomposition analogy of t h e  

method given i n  [ 2 ]  and [ 3 ] .  A s  we see t h e  number of operations required t o  

update i s  on t h e  order of n . Another procedure, analagous t o  that given i n  

[ 11 and [ 51, provides an updated decomposition with an operation count 

proport ional  t o  n . 

3 

2 

For t h i s  procedure a d i f f e ren t  f ac to r i za t ion  i s  employed. This has t h e  

L = BU form 

where L i s  lower t r i angu la r  and U i s  non-singular (but  not necessar i ly  upper 

t r i a n g u l a r ) .  

no t ice  t h a t  

To see that t h i s  form is use fu l  f o r  solving t h e  required system, 

-1 -1 B y = B W  y = L U  y = d  

Thus by solving LF = d and l e t t i n g  y = UT we may solve By = d .  For t h e  
T T T  T T 

transposed system B w = f ,  we  have U B w = L w = U f ,  thus  by l e t t i n g  ;; 
T T 2 

= U f and solving L w = w, w e  obtain w. 

mu l t ip l i ca t ions  compared with n2 required with t h e  usual  LU f ac to r i za t ion .  

These so lu t ions  requi re  about 3n / 2  

The saving i n  computation i s  t o  be gained i n  t h e  updating of t h e  f ac to r i za t ion .  

The f ac to r i za t ion  of t h e  i n i t i a 1 . B  of t h e  sequence of matr ices  may be 

obtained through a simple var ian t  of t h e  columnwise Gaussian el iminat ion 

algorithm with p a r t i a l  pivoting, yielding L = B P fi, where P i s  a permutation 

matrix and is upper t r iangular .  The i n i t i a l  f ac to r  U i s  then P6 (and w e  

henceforth disregard t h e  f a c t  that U i s  permuted upper t r i angu la r ) .  

3 decomposition requi res  t h e  expected n /3  operat ions of Gaussian el iminat ion.  

This 
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t h  
The upda%iny, i n  nccomplinhed by de le t ing  t h e  k row of B and in se r t ing  

ti if:  r w w  row c a t  t h e  bottom rind movinp, rows k + l , .  . . , n  up t o  k,. . . , n - l .  Thi:; 

( i n  f'act,, permuted) matrix i s  B ' .  

up t o  k,. . . ,n-1, and adding C U  as t h e  f i n a l  row we have 

Hessenberg (and lower t r i angu la r  i n  i t s  f i r s t  (k-l)X(k-l) minor). 

our f i n a l  fac tor iza t ion ,  w e  need only reduce t h e  super diagonal elements of f, 

By de le t ing  row k of L ,  moving rows k+L,...,n 

= B'U where E i s  lower 

To obtain 

t o  zero using t h e  standard interchange and el iminat ion operations of t he  

Gaussian process.  These same operations a r e  performed simultaneously t o  U ,  

y ie ld ing  t h e  fac tor iza t ion  L' = B ' U ' ,  where L' i s  lower t r i angu la r .  

The number of operations required f o r  t h i s  process i s  approximately 

equally l i k e l y  among t h e  values l , . . . , n  then t h e  number of expected operations 

is  about 5n /3. 

B w = f ,  t h e  t o t a l  is  14n /3 compared with n 16, o r  a reduct ion by a f a c t o r  of 

2 
If we include computation f o r  t h e  two so lu t ions ,  By = d and 

T 2 3 

28/11. These f igures  are only for l a r g e  n and it is inco r rec t ,  as a c loser  

ana lys i s  shows, t o  surmise that small values  of n favor t h e  first algorithm. 

(Recal l  t h a t  t h e  two n 

i n  t h e  operat ion count f o r  t h e  f i r s t  method.) 

2 terms f o r  t h e  so lu t ion  of t h e  systems were ignored 

Another important consideration i n  t h e  numerical implementation of t h e  

descent algorithm is t he  a b i l i t y  t o  i t e r a t i v e l y  r e f i n e  so lu t ions .  Ei ther  of 

t h e  decompositions presented can be used i n  t h e  standard fashion t o  r e f i n e  

so lu t ions  of By = d or Bw = f ,  given t h e  r e s idua l s  compuated i n  ex t ra  prec is ion .  

It  may a l s o  be desirable  t o  r e f ine  the  f i n a l  so lu t ion .  Unfortunately,  

t h i s  so lu t ion  does not occur na tu ra l ly  as t h e  so lu t ion  t o  one of these 

n x n systems. 

of the  so lu t ion  t o  an n+lxn+l order system. 

It does occur (as does any ver tex  of t he  polytope) as p a r t  

22 



A t  a ver tex  t h e  s e t  M(x) of indices of maximum magnitude r e s i d u a l  

elements h a s  a t  l e a s t  n+l components. If' it has more than  n + l  (and, has 

been previously commented, t h i s  i s  extremely rare i n  p r a c t i c e )  t h e r e  i s  a 

subset of exac t ly  n+l which "define" the  ver tex :  

hyperplanes have only one po in t ,  t h e  vertex,  i n  common. We s h a l l  henceforth 

assume M(x) has exac t ly  n + l  ind ices .  

i .e . ,  the  n+l corresponding 

It must hold t h a t  t h e  value 8 = Iri(x)I i s  equal f o r  a l l  i E M(x). We 

can then say (where 6, = sgn(r i (x) )b i )  

f o r  i & M(x). 

s g n ( r i ( x ) )  w e  may assume t h a t  i f  the i n i t i a l  value of x i s  s u f f i c i e n t l y  ac- 

cu ra t e  r i ( x )  does not change s ign  during t h e  refinement. 

Although x a c t u a l l y  en ters  i n  a non-linear fashion through 

Se lec t  some index k E M(x) and solve t h e  transposed l i n e a r  system t o  

represent  sgn( r  ( x ) )  % as a l i n e a r  combination of  s g n ( r i ( x ) ) a i ,  i E M(x) 

- k. i .e.,  

k 

.. we then nave 

8 + i; = sgn(r,(x))akx = yi s g n ( r i ( x ) )  aix 
i € M (  x ) -k k 

c Yi(O + 5 . )  = 0 c yi + e  YiGi - - 
i & M  (x ) -k i & M  (x  ) -k 1 ieM(x )-k 

= @ * S + T  

where S = c yi and T = C y.5.. As a r e s u l t  0 = (Gk - T ) / ( S  - 1). (Notice 

S > 1 as was shown i n  t h e  previous section.)  

ieM( x)  -k ieM(x)-k 
To r e f i n e  t h e  so lu t ion ,  l e t  

- 
A%i = bi - sgn( r i (x ) ) a i  x + 0 ,  i E M(x) 
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(where AT = C yi A C i )  and so lve  t h e  nxn l i n e a r  system 
i € M (  x ) -k 

sgn(r i (x) )a i  Cuc = + A8. 

Fina l ly  x and 8 a re  replaced by x - Ax and 8 - Ax, respec t ive ly ,  and t h e  

i t e r a t i o n  proceeds u n t i l  t h e  changes i n  x and 8 are  s u f f i c i e n t l y  small. 

The ca l cu la t ion  of AS. and A0 are necessar i ly  done i n  ex t ra  prec is ion .  
1 
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5. ItESUI,T:; UP' NUMEIiICAL XXPERIENCE 

The descent method presented here was programmed i n  FORTRAN and subjected 

t o  a s e r i e s  of t e s t s .  

parameter h and monitored t h e  elements of m a x i m u m  r e s i d u a l  magnitude. 

a l  subroutine modules implemented the notions of Sect ion 4 f o r  t h e  i n i t i a l  de- 

composition, updating, and solving of regular and transposed systems. 

The p r inc ip l e  subroutine determined t h e  descent s t ep  

Addition- 

For comparison purposes t h e  same tests were performed using the  ascent  

algorithm of Bartels and Golub [ 4 ]  implemented i n  FORTRAN by Shryer ET] .  l'he 

form of t h e  t e s t  matr ices  is due t o  l3artels and Golub [ 2 ]  and has the  elements 

of t h e  matrix A as well  as t h e  r i g h t  hand s ide  b se lec ted  randomly as the  

product q*v where q i s  uniformly d is t r ibu ted  on [0,1] and v has t h e  value 

?8 

..., 39, and m 10 ,  20, ..., 70 with the r e s t r i c t i o n  t h a t  m > n. The descent 

algorithm (although with a capabi l i ty  f o r  any i n i t i a l  es t imate  of x) used 

x = 0 as t h e  i n i t i a l  estimate.  The Bartels-Golub algorithm determines i t s  

own i n i t i a l  estimate. 

with equal probabi l i ty .  The values  of n were 4, 9 ,  1 4 ,  -I, 50- , +€r3, +8- 4 

2 Storage required f o r  t h e  descent algorithm i s  about 3n /2  + 3n + 2m i n  

addi t ion  t o  t h a t  required f o r  A ,  x, and b. In  t h e  Schryer implementation of 

2 
t h e  Bartels and Golub algorithm mn + n + 6n + m loca t ions  are required.  

Twenty tests were run f o r  each p a i r  of values  of m and n. Each problem 

w a s  solved co r rec t ly  and with comparable accuracy by t h e  two methods. 

a r e  summarized i n  t h e  t a b l e  and graphs (values  are average CPU times on t h e  

CDC 7600 a t  t h e  National Center f o r  Atmospheric Research). 

T i m i n g s  

I n  Figure 1, t h e  timings f o r  the descent algorithm a r e  displayed f i r s t ,  

t h e  ascent  algorithm second. Notice t h a t  

30x19 en t r i e s ,  a l l  t imings are higher f o r  

with t h e  exception 

t h e  ascent  method. 

of t he  20x19 and 

The ascent 
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method immediately determines t h e  so lu t ion  t o  n+l  x n order problems, t h e  

descent algorithm does not .  

Figure 2 shows t h e  dependency of t h e  t imings on m f o r  n = 4 .  Both t h e  

algorithms display the expected l i n e a r  behavior ind ica t ing  that whether t h e  

s t eps  are of t h e  ascent or descent type,  t h e  number of s t eps  i s  proport ional  

t o  m.  

descent timings. 

The rate of growth of t h e  ascent  t imings appears t o  be about 1 . 4  of the  

Figure 3 shows t h e  dependence on m f o r  m = 60. The v d u e s  have been 

2 3 scaled by l / n  t o  f e a t u r e  t h e  growth. The ascent  algorithm performs O ( n  ) 

computations a t  each of O ( m >  s t eps  for  a t o t a l  of O ( m n  ) .  Figure 3 suggests 

t h i s .  Alternat ively the  descent algorithm performs an i n i t i a l  decomposition 

r equ i r ing  O(n ) operations,  then  subsequent s t eps  ( O ( m )  i n  number) requi re  

3 

3 

2 o ( n  ) operations.  

seems t o  display.  

A vers ion  of 

ploying t h e  O(n ) 
I 2 

3 2 Thus, we  expect a t o t a l  of O(n ) + O(mn ) which Figure 3 

the  ascent  algorithm based on t h e  S t i e f e l  method but em-  

updating technique of Sect ion 4 w a s  a l s o  programmed and 

i t s  performance was i n  general  superior  t o  t h e  Bartels-Golub algorithm but 

i n f e r i o r  t o  t h e  descent method. 
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Figure 1 
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6. ADDITION OF LINEAR EQUALITY AND INEQUALITY CONSTRAINTS 

The descent method ( o r  any method) e a s i l y  admits t h e  add i t ion  of l i n e a r  

equa l i ty  cons t ra in ts .  I f  t h e  problem were t o  minimize I (Ax-b( 1 such t h a t  

Ex = d where E i s  kxn ( k  < u )  and d i s  a k vec to r ,  then a transformation of 

coordinates maps t h i s  i n to  a standard problem with n-k va r i ab le s .  To see t h i s ,  

- 

f a c t o r  E i n t o  t h e  product of LU where L i s  kxn lower t r i a n g u l a r  and U i s  nxn. 

Let us assume t h e  equal i ty  cons t r a in t s  a r e  independent, i n  which case U i s  

non-singular. 

angular mat r ices . )  

(Obvious choices f o r  U a r e  orthogonal o r  permuted upper t r i -  

Let t ing  y = Ux we see Ly = d determines t h e  f i r s t  k com- 

ponents of y. Call these components y and t h e  unknown remaining n-k-vector 1 

Let t ing  A' = AU'l ( i . e . ,  solving t h e  systems a t U  = a f o r  t h e  rows of A ' )  y2 * i i 

and blocking A' in to  [A'A'] with k and n-k columns, r e spec t ive ly ,  we have 1 2  

now Ax = A'y = A'y 

ing y2 which minimizes I IA'y - (b  - A'y )I 1 ,  then  f i n a l l y  l e t t i n g  x = U 

+ A'y But A'y i s  known and we a r e  l e f t  with determin- 11 2 2 '  11 

2 2  11  

For t h e  addition of inequal i ty  c o n s t r a i n t s  t h e  problem has the form 

Minimize I ]Ax - b )  I 
So that Gx > ' n .  - 

Geometrically, the  polytope defined by t h e  problem without t h e  inequa l i ty  

cons t r a in t s  has now been t runca ted  by v e r t i c a l  c u t s .  

f e a s i b l e  vector" ( i . e . ,  an i n i t i a l  vec tor  s a t i s f y i n g  Gx > - h )  t h e  descent 

occurs as before u n t i l  t h e  descent s t e p  would leave  t h e  constrained region. 

A t  t h a t  point (where Gx and h agree i n  one o r  more components) c o n s t r a i n t s  

en te r  i n t o  t h e  determination of t h e  d i r e c t i o n  of descent.  ( E s s e n t i a l l y  we 

descend maintaining those component agreements through t h e  descent . )  

before a ver tex  is  eventually reached and a modification of t h e  method of 

Given an " i n i t i a l  

A s  

Section 3 y i e l d s  a ver tex  t o  ve r t ex  descent.  
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